Properties
An affine transformation preserves:
- The collinearity relation between points; i.e., points which lie on the same line (called collinear points) continue to be collinear after the transformation.
- Ratios of vectors along a line; i.e., for distinct collinear points the ratio of and is the same as that of and .
- More generally barycenters of weighted collections of points.
An affine transformation is invertible if and only if A is invertible. In the matrix representation, the inverse is:
The invertible affine transformations (of an affine space onto itself) form the affine group, which has the general linear group of degree n as subgroup and is itself a subgroup of the general linear group of degree n + 1.
The similarity transformations form the subgroup where A is a scalar times an orthogonal matrix. For example, if the affine transformation acts on the plane and if the determinant of A is 1 or −1 then the transformation is an equi-areal mapping. Such transformations form a subgroup called the equi-affine group A transformation that is both equi-affine and a similarity is an isometry of the plane taken with Euclidean distance.
Each of these groups has a subgroup of transformations which preserve orientation: those where the determinant of A is positive. In the last case this is in 3D the group of rigid body motions (proper rotations and pure translations).
If there is a fixed point, we can take that as the origin, and the affine transformation reduces to a linear transformation. This may make it easier to classify and understand the transformation. For example, describing a transformation as a rotation by a certain angle with respect to a certain axis is easier to get an idea of the overall behavior of the transformation than describing it as a combination of a translation and a rotation. However, this depends on application and context. Describing such a transformation for an object tends to make more sense in terms of rotation about an axis through the center of that object, combined with a translation, rather than by just a rotation with respect to some distant point. As an example: "move 200 m north and rotate 90° anti-clockwise", rather than the equivalent "with respect to the point 141 m to the northwest, rotate 90° anti-clockwise".
Read more about this topic: Affine Transformation
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)