Affine Transformation - Mathematical Definition

Mathematical Definition

An affine map between two affine spaces is a map on the points that acts linearly on the vectors (that is, the vectors between points of the space). In symbols, f determines a linear transformation φ such that, for any pair of points :

or

.

We can interpret this definition in a few other ways, as follows.

If an origin is chosen, and denotes its image, then this means that for any vector :

If an origin is also chosen, this can be decomposed as an affine transformation that sends, namely

followed by the translation by a vector .

The conclusion is that, intuitively, consists of a translation and a linear map.

Read more about this topic:  Affine Transformation

Famous quotes containing the words mathematical and/or definition:

    All science requires mathematics. The knowledge of mathematical things is almost innate in us.... This is the easiest of sciences, a fact which is obvious in that no one’s brain rejects it; for laymen and people who are utterly illiterate know how to count and reckon.
    Roger Bacon (c. 1214–c. 1294)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)