Mathematical Definition
An affine map between two affine spaces is a map on the points that acts linearly on the vectors (that is, the vectors between points of the space). In symbols, f determines a linear transformation φ such that, for any pair of points :
or
- .
We can interpret this definition in a few other ways, as follows.
If an origin is chosen, and denotes its image, then this means that for any vector :
If an origin is also chosen, this can be decomposed as an affine transformation that sends, namely
followed by the translation by a vector .
The conclusion is that, intuitively, consists of a translation and a linear map.
Read more about this topic: Affine Transformation
Famous quotes containing the words mathematical and/or definition:
“What he loved so much in the plant morphological structure of the tree was that given a fixed mathematical basis, the final evolution was so incalculable.”
—D.H. (David Herbert)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)