Affine Transformation of The Plane
Affine transformations in two real dimensions include:
- pure translations,
- scaling in a given direction, with respect to a line in another direction (not necessarily perpendicular), combined with translation that is not purely in the direction of scaling; taking "scaling" in a generalized sense it includes the cases that the scale factor is zero (projection) and negative; the latter includes reflection, and combined with translation it includes glide reflection,
- rotation combined with a homothety and a translation,
- shear mapping combined with a homothety and a translation, or
- squeeze mapping combined with a homothety and a translation.
To visualise the general affine transformation of the Euclidean plane, take labelled parallelograms ABCD and A′B′C′D′. Whatever the choices of points, there is an affine transformation T of the plane taking A to A′, and each vertex similarly. Supposing we exclude the degenerate case where ABCD has zero area, there is a unique such affine transformation T. Drawing out a whole grid of parallelograms based on ABCD, the image T(P) of any point P is determined by noting that T(A) = A′, T applied to the line segment AB is A′B′, T applied to the line segment AC is A′C′, and T respects scalar multiples of vectors based at A. Geometrically T transforms the grid based on ABCD to that based in A′B′C′D′.
Affine transformations don't respect lengths or angles; they multiply area by a constant factor
- area of A′B′C′D′ / area of ABCD.
A given T may either be direct (respect orientation), or indirect (reverse orientation), and this may be determined by its effect on signed areas (as defined, for example, by the cross product of vectors).
Read more about this topic: Affine Transformation
Famous quotes containing the word plane:
“As for the dispute about solitude and society, any comparison is impertinent. It is an idling down on the plane at the base of a mountain, instead of climbing steadily to its top.”
—Henry David Thoreau (18171862)