Phases
The course of the action potential can be divided into five parts: the rising phase, the peak phase, the falling phase, the undershoot phase, and the refractory period. During the rising phase the membrane potential depolarizes (becomes more positive). The point at which depolarization stops is called the peak phase. At this stage, the membrane potential reaches a maximum. Subsequent to this, there is a falling phase. During this stage the membrane potential hyperpolarizes (becomes more negative). The undershoot phase is the point during which the membrane potential becomes temporarily more negatively charged than when at rest. Finally, the time during which a subsequent action potential is impossible or difficult to fire is called the refractory period, which may overlap with the other phases.
The course of the action potential is determined by two coupled effects. First, voltage-sensitive ion channels open and close in response to changes in the membrane voltage Vm. This changes the membrane's permeability to those ions. Second, according to the Goldman equation, this change in permeability changes in the equilibrium potential Em, and, thus, the membrane voltage Vm. Thus, the membrane potential affects the permeability, which then further affects the membrane potential. This sets up the possibility for positive feedback, which is a key part of the rising phase of the action potential. A complicating factor is that a single ion channel may have multiple internal "gates" that respond to changes in Vm in opposite ways, or at different rates. For example, although raising Vm opens most gates in the voltage-sensitive sodium channel, it also closes the channel's "inactivation gate", albeit more slowly. Hence, when Vm is raised suddenly, the sodium channels open initially, but then close due to the slower inactivation.
The voltages and currents of the action potential in all of its phases were modeled accurately by Alan Lloyd Hodgkin and Andrew Huxley in 1952, for which they were awarded the Nobel Prize in Physiology or Medicine in 1963. However, their model considers only two types of voltage-sensitive ion channels, and makes several assumptions about them, e.g., that their internal gates open and close independently of one another. In reality, there are many types of ion channels, and they do not always open and close independently.
Read more about this topic: Action Potential
Famous quotes containing the word phases:
“That man is to be pitied who cannot enjoy social intercourse without eating and drinking. The lowest orders, it is true, cannot imagine a cheerful assembly without the attractions of the table, and this reflection alone should induce all who aim at intellectual culture to endeavor to avoid placing the choicest phases of social life on such a basis.”
—Mrs. H. O. Ward (18241899)
“But parents can be understanding and accept the more difficult stages as necessary times of growth for the child. Parents can appreciate the fact that these phases are not easy for the child to live through either; rapid growth times are hard on a child. Perhaps its a small comfort to know that the harder-to-live-with stages do alternate with the calmer times,so parents can count on getting periodic breaks.”
—Saf Lerman (20th century)
“This socialism will develop in all its phases until it reaches its own extremes and absurdities. Then once again a cry of denial will break from the titanic chest of the revolutionary minority and again a mortal struggle will begin, in which socialism will play the role of contemporary conservatism and will be overwhelmed in the subsequent revolution, as yet unknown to us.”
—Alexander Herzen (18121870)