Absolute Convergence - Relation To Convergence

Relation To Convergence

If G is complete with respect to the metric d, then every absolutely convergent series is convergent. The proof is the same as for complex-valued series: use the completeness to derive the Cauchy criterion for convergence—a series is convergent if and only if its tails can be made arbitrarily small in norm—and apply the triangle inequality.

In particular, for series with values in any Banach space, absolute convergence implies convergence. The converse is also true: if absolute convergence implies convergence in a normed space, then the space is a Banach space.

If a series is convergent but not absolutely convergent, it is called conditionally convergent. An example of a conditionally convergent series is the alternating harmonic series. Many standard tests for divergence and convergence, most notably including the ratio test and the root test, demonstrate absolute convergence. This is because a power series is absolutely convergent on the interior of its disk of convergence.

Read more about this topic:  Absolute Convergence

Famous quotes containing the words relation to and/or relation:

    The difference between objective and subjective extension is one of relation to a context solely.
    William James (1842–1910)

    [Man’s] life consists in a relation with all things: stone, earth, trees, flowers, water, insects, fishes, birds, creatures, sun, rainbow, children, women, other men. But his greatest and final relation is with the sun.
    —D.H. (David Herbert)