Infinite Abelian Groups
Тhe simplest infinite abelian group is the infinite cyclic group Z. Any finitely generated abelian group A is isomorphic to the direct sum of r copies of Z and a finite abelian group, which in turn is decomposable into a direct sum of finitely many cyclic groups of primary orders. Even though the decomposition is not unique, the number r, called the rank of A, and the prime powers giving the orders of finite cyclic summands are uniquely determined.
By contrast, classification of general infinitely generated abelian groups is far from complete. Divisible groups, i.e. abelian groups A in which the equation nx = a admits a solution x ∈ A for any natural number n and element a of A, constitute one important class of infinite abelian groups that can be completely characterized. Every divisible group is isomorphic to a direct sum, with summands isomorphic to Q and Prüfer groups Qp/Zp for various prime numbers p, and the cardinality of the set of summands of each type is uniquely determined. Moreover, if a divisible group A is a subgroup of an abelian group G then A admits a direct complement: a subgroup C of G such that G = A ⊕ C. Thus divisible groups are injective modules in the category of abelian groups, and conversely, every injective abelian group is divisible (Baer's criterion). An abelian group without non-zero divisible subgroups is called reduced.
Two important special classes of infinite abelian groups with diametrically opposite properties are torsion groups and torsion-free groups, exemplified by the groups Q/Z (periodic) and Q (torsion-free).
Read more about this topic: Abelian Group
Famous quotes containing the words infinite and/or groups:
“When I consider the short duration of my life, swallowed up in the eternity before and after, the little space which I fill and even can see, engulfed in the infinite immensity of spaces of which I am ignorant and which know me not, I am frightened and am astonished at being here rather than there. For there is no reason why here rather than there, why now rather than then.”
—Blaise Pascal (16231662)
“Under weak government, in a wide, thinly populated country, in the struggle against the raw natural environment and with the free play of economic forces, unified social groups become the transmitters of culture.”
—Johan Huizinga (18721945)