3-partition Problem - Strong NP-completeness

Strong NP-completeness

The 3-partition problem remains NP-complete even when the integers in S are bounded above by a polynomial in n. In other words, the problem remains NP-complete even when representing the numbers in the input instance in unary. i.e., 3-partition is NP-complete in the strong sense or strongly NP-complete. This property, and 3-partition in general, is useful in many reductions where numbers are naturally represented in unary. In contrast, the partition problem is known to be NP-complete only when the numbers are encoded in binary, and have value exponential in n.

Read more about this topic:  3-partition Problem

Famous quotes containing the word strong:

    Computers are good at swift, accurate computation and at storing great masses of information. The brain, on the other hand, is not as efficient a number cruncher and its memory is often highly fallible; a basic inexactness is built into its design. The brain’s strong point is its flexibility. It is unsurpassed at making shrewd guesses and at grasping the total meaning of information presented to it.
    Jeremy Campbell (b. 1931)