3-partition Problem - Strong NP-completeness

Strong NP-completeness

The 3-partition problem remains NP-complete even when the integers in S are bounded above by a polynomial in n. In other words, the problem remains NP-complete even when representing the numbers in the input instance in unary. i.e., 3-partition is NP-complete in the strong sense or strongly NP-complete. This property, and 3-partition in general, is useful in many reductions where numbers are naturally represented in unary. In contrast, the partition problem is known to be NP-complete only when the numbers are encoded in binary, and have value exponential in n.

Read more about this topic:  3-partition Problem

Famous quotes containing the word strong:

    Nature’s law says that the strong must prevent the weak from living, but only in a newspaper article or textbook can this be packaged into a comprehensible thought. In the soup of everyday life, in the mixture of minutia from which human relations are woven, it is not a law. It is a logical incongruity when both strong and weak fall victim to their mutual relations, unconsciously subservient to some unknown guiding power that stands outside of life, irrelevant to man.
    Anton Pavlovich Chekhov (1860–1904)