The 3-partition problem is an NP-complete problem in computer science. The problem is to decide whether a given multiset of integers can be partitioned into triples that all have the same sum. More precisely, given a multiset S of n = 3 m positive integers, can S be partitioned into m subsets S1, S2, …, Sm such that the sum of the numbers in each subset is equal? The subsets S1, S2, …, Sm must form a partition of S in the sense that they are disjoint and they cover S. Let B denote the (desired) sum of each subset Si, or equivalently, let the total sum of the numbers in S be m B. The 3-partition problem remains NP-complete when every integer in S is strictly between B/4 and B/2. In this case, each subset Si is forced to consist of exactly three elements (a triple).
The 3-partition problem is similar to the partition problem, which in turn is related to the subset sum problem. In the partition problem, the goal is to partition S into two subsets with equal sum. In 3-partition the goal is to partition S into m subsets (or n/3 subsets), not just three subsets, with equal sum.
Read more about 3-partition Problem: Strong NP-completeness, Descriptions
Famous quotes containing the word problem:
“From cradle to grave this problem of running order through chaos, direction through space, discipline through freedom, unity through multiplicity, has always been, and must always be, the task of education, as it is the moral of religion, philosophy, science, art, politics and economy; but a boys will is his life, and he dies when it is broken, as the colt dies in harness, taking a new nature in becoming tame.”
—Henry Brooks Adams (18381918)