3-partition Problem

The 3-partition problem is an NP-complete problem in computer science. The problem is to decide whether a given multiset of integers can be partitioned into triples that all have the same sum. More precisely, given a multiset S of n = 3 m positive integers, can S be partitioned into m subsets S1, S2, …, Sm such that the sum of the numbers in each subset is equal? The subsets S1, S2, …, Sm must form a partition of S in the sense that they are disjoint and they cover S. Let B denote the (desired) sum of each subset Si, or equivalently, let the total sum of the numbers in S be m B. The 3-partition problem remains NP-complete when every integer in S is strictly between B/4 and B/2. In this case, each subset Si is forced to consist of exactly three elements (a triple).

The 3-partition problem is similar to the partition problem, which in turn is related to the subset sum problem. In the partition problem, the goal is to partition S into two subsets with equal sum. In 3-partition the goal is to partition S into m subsets (or n/3 subsets), not just three subsets, with equal sum.

Read more about 3-partition Problem:  Strong NP-completeness, Descriptions

Famous quotes containing the word problem:

    A curious thing about the ontological problem is its simplicity. It can be put in three Anglo-Saxon monosyllables: ‘What is there?’ It can be answered, moveover, in a word—‘Everything.’
    Willard Van Orman Quine (b. 1908)