Equivalent Forms of Zorn's Lemma
Zorn's lemma is equivalent (in ZF) to three main results:
- Hausdorff maximal principle
- Axiom of choice
- Well-ordering theorem.
Moreover, Zorn's lemma (or one of its equivalent forms) implies some major results in other mathematical areas. For example,
- Banach's extension theorem which is used to prove one of the most fundamental results in functional analysis, the Hahn–Banach theorem
- Every vector space has a Hamel basis, a result from linear algebra (to which it is equivalent)
- Every commutative unital ring has a maximal ideal, a result from ring theory
- Tychonoff's theorem in topology (to which it is also equivalent)
In this sense, we see how Zorn's lemma can be seen as a powerful tool, especially in the sense of unified mathematics.
Read more about this topic: Zorn's Lemma
Famous quotes containing the words equivalent and/or forms:
“When the apple is ripe it will fall.”
—Irish proverb.
An English equivalent to this might be, To everything there is a season.
“There is no exquisite beauty, says Bacon, Lord Verulam, speaking truly of all the forms and genera of beauty, without some strangeness in the proportion.”
—Edgar Allan Poe (18091849)