Another Proof
Zolotarev's lemma can be deduced easily from Gauss's lemma and vice versa. The example
- ,
i.e. the Legendre symbol (a/p) with a = 3 and p = 11, will illustrate how the proof goes. Start with the set {1, 2, . . ., p − 1} arranged as a matrix of two rows such that the sum of the two elements in any column is zero mod p, say:
1 | 2 | 3 | 4 | 5 |
10 | 9 | 8 | 7 | 6 |
Apply the permutation :
3 | 6 | 9 | 1 | 4 |
8 | 5 | 2 | 10 | 7 |
The columns still have the property that the sum of two elements in one column is zero mod p. Now apply a permutation V which swaps any pairs in which the upper member was originally a lower member:
3 | 5 | 2 | 1 | 4 |
8 | 6 | 9 | 10 | 7 |
Finally, apply a permutation W which gets back the original matrix:
1 | 2 | 3 | 4 | 5 |
10 | 9 | 8 | 7 | 6 |
We have W−1 = VU. Zolotarev's lemma says (a/p) = 1 if and only if the permutation U is even. Gauss's lemma says (a/p) = 1 iff V is even. But W is even, so the two lemmas are equivalent for the given (but arbitrary) a and p.
Read more about this topic: Zolotarev's Lemma
Famous quotes containing the word proof:
“The insatiable thirst for everything which lies beyond, and which life reveals, is the most living proof of our immortality.”
—Charles Baudelaire (18211867)
“Ah! I have penetrated to those meadows on the morning of many a first spring day, jumping from hummock to hummock, from willow root to willow root, when the wild river valley and the woods were bathed in so pure and bright a light as would have waked the dead, if they had been slumbering in their graves, as some suppose. There needs no stronger proof of immortality. All things must live in such a light. O Death, where was thy sting? O Grave, where was thy victory, then?”
—Henry David Thoreau (18171862)