Related Laws
Zipf's law now refers more generally to frequency distributions of "rank data," in which the relative frequency of the nth-ranked item is given by the Zeta distribution, 1/(nsζ(s)), where the parameter s > 1 indexes the members of this family of probability distributions. Indeed, Zipf's law is sometimes synonymous with "zeta distribution," since probability distributions are sometimes called "laws". This distribution is sometimes called the Zipfian or Yule distribution.
A generalization of Zipf's law is the Zipf–Mandelbrot law, proposed by Benoît Mandelbrot, whose frequencies are:
The "constant" is the reciprocal of the Hurwitz zeta function evaluated at s.
Zipfian distributions can be obtained from Pareto distributions by an exchange of variables.
The Zipf distribution is sometimes called the discrete Pareto distribution because it is analogous to the continuous Pareto distribution in the same way that the discrete uniform distribution is analogous to the continuous uniform distribution.
The tail frequencies of the Yule–Simon distribution are approximately
for any choice of ρ > 0.
In the parabolic fractal distribution, the logarithm of the frequency is a quadratic polynomial of the logarithm of the rank. This can markedly improve the fit over a simple power-law relationship. Like fractal dimension, it is possible to calculate Zipf dimension, which is a useful parameter in the analysis of texts.
It has been argued that Benford's law is a special bounded case of Zipf's law, with the connection between these two laws being explained by their both originating from scale invariant functional relations from statistical physics and critical phenomena. The ratios of probabilities in Benford's law are not constant.
Benford's law: |
||
---|---|---|
1 | 0.30103000 | |
2 | 0.17609126 | -0.7735840 |
3 | 0.12493874 | -0.8463832 |
4 | 0.09691001 | -0.8830605 |
5 | 0.07918125 | -0.9054412 |
6 | 0.06694679 | -0.9205788 |
7 | 0.05799195 | -0.9315169 |
8 | 0.05115252 | -0.9397966 |
9 | 0.04575749 | -0.9462848 |
Zipf's distribution is also applied to estimate the emergent value of networked systems and also service oriented environments.
Read more about this topic: Zipf's Law
Famous quotes containing the words related and/or laws:
“There is nothing but is related to us, nothing that does not interest us,kingdom, college, tree, horse, or iron show,the roots of all things are in man.”
—Ralph Waldo Emerson (18031882)
“Language is a process of free creation; its laws and principles are fixed, but the manner in which the principles of generation are used is free and infinitely varied. Even the interpretation and use of words involves a process of free creation.”
—Noam Chomsky (b. 1928)