Zinc Finger Nuclease - Zinc-finger Nickases

Zinc-finger Nickases

Zinc-finger nickases (ZFNickases) are created by inactivating the catalytic activity of one ZFN monomer in the ZFN dimer required for double stranded cleavage. ZFNickases demonstrate strand-specific nicking activity in vitro and thus provide for highly specific single stranded breaks in DNA. These SSBs undergo the same cellular mechanisms for DNA that ZFNs exploit, but they show a significantly reduced frequency of mutagenic NHEJ repairs at their target nicking site. This reduction provides a bias for HR-mediated gene modifications. ZFNickases can induce targeted HR in cultured human cells, although at lower levels than corresponding ZFNs from which they were derived because nicks can be repaired without genetic alteration. A major limitation of ZFN-mediated gene modifications is the competition between NHEJ and HR repair pathways. Regardless of the presence of a DNA donor construct, both repair mechanisms can be activated following DSBs induced by ZFNs. Thus, ZFNickases is the first plausible attempt at engineering a method to favor the HR method of DNA repair as opposed to the error-prone NHEJ repair. By reducing NHEJ repairs, ZFNickases can thereby reduce the spectrum of unwanted off-target alterations. The ease by which ZFNickases can be derive from ZFNs provides a great platform for further studies regarding the optimization of ZFNickases and possibly increasing their levels of targeted HR while still maintain their reduced NHEJ frequency.

Read more about this topic:  Zinc Finger Nuclease