Formal Properties
Formally a Zhegalkin monomial is the product of a finite set of distinct variables (hence square-free), including the empty set whose product is denoted 1. There are 2n possible Zhegalkin monomials in n variables, since each monomial is fully specified by the presence or absence of each variable. A Zhegalkin polynomial is the sum (exclusive-or) of a set of Zhegalkin monomials, with the empty set denoted by 0. A given monomial's presence or absence in a polynomial corresponds to that monomial's coefficient being 1 or 0 respectively. The Zhegalkin monomials, being linearly independent, span a 2n-dimensional vector space over the Galois field GF(2) (NB: not GF(2n), whose multiplication is quite different). The 22n vectors of this space, i.e. the linear combinations of those monomials as unit vectors, constitute the Zhegalkin polynomials. The exact agreement with the number of boolean operations on n variables, which exhaust the n-ary operations on {0,1}, furnishes a direct counting argument for completeness of the Zhegalkin polynomials as a boolean basis.
This vector space is not equivalent to the free boolean algebra on n generators because it lacks complementation (bitwise logical negation) as an operation (equivalently, because it lacks the top element as a constant). This is not to say that the space is not closed under complementation or lacks top (the all-ones vector) as an element, but rather that the linear transformations of this and similarly constructed spaces need not preserve complement and top. Those that do preserve them correspond to the boolean homomorphisms, e.g. there are four linear transformations from the vector space of Zhegalkin polynomials over one variable to that over none, only two of which are boolean homomorphisms.
Read more about this topic: Zhegalkin Polynomial
Famous quotes containing the words formal and/or properties:
“That anger can be expressed through words and non-destructive activities; that promises are intended to be kept; that cleanliness and good eating habits are aspects of self-esteem; that compassion is an attribute to be prizedall these lessons are ones children can learn far more readily through the living example of their parents than they ever can through formal instruction.”
—Fred Rogers (20th century)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)