Calculation of Zeta Potential
The most known and widely-used theory for calculating zeta potential from experimental data is that developed by Marian Smoluchowski in 1903. This theory was originally developed for electrophoresis; however, an extension to electroacoustics is now also available. Smoluchowski's theory is powerful because it is valid for dispersed particles of any shape and any concentration. However, it has its limitations:
- Detailed theoretical analysis proved that Smoluchowski's theory is valid only for a sufficiently thin double layer, when the Debye length, 1/κ, is much smaller than the particle radius a:
- The model of the "thin double layer" offers tremendous simplifications not only for electrophoresis theory but for many other electrokinetic and electroacoustic theories. This model is valid for most aqueous systems because the Debye length is typically only a few nanometers in water. The model breaks only for nano-colloids in a solution with ionic strength approaching that of pure water.
- Smoluchowski's theory neglects the contribution of surface conductivity. This is expressed in modern theories as the condition of a small Dukhin number:
The development of electrophoretic and electroacoustic theories with a wider range of validity was a purpose of many studies during the 20th century. There are several analytical theories that incorporate surface conductivity and eliminate the restriction of the small Dukhin number for both the electrokinetic and electroacoustic applications.
Early pioneering work in that direction dates back to Overbeek and Booth.
Modern, rigorous electrokinetic theories that are valid for any zeta potential and often any κa, stem mostly from the Ukrainian (Dukhin, Shilov and others) and Australian (O'Brien, White, Hunter and others) schools. Historically, the first one was Dukhin-Semenikhin theory. A similar theory was created 10 years later by O'Brien and Hunter. Assuming a thin double layer, these theories would yield results that are very close to the numerical solution provided by O'Brien and White. There are also general electroacoustic theories that are valid for any values of Debye length and Dukhin number.
Read more about this topic: Zeta Potential
Famous quotes containing the words calculation of, calculation and/or potential:
“To my thinking boomed the Professor, begging the question as usual, the greatest triumph of the human mind was the calculation of Neptune from the observed vagaries of the orbit of Uranus.
And yours, said the P.B.”
—Samuel Beckett (19061989)
“To my thinking boomed the Professor, begging the question as usual, the greatest triumph of the human mind was the calculation of Neptune from the observed vagaries of the orbit of Uranus.
And yours, said the P.B.”
—Samuel Beckett (19061989)
“Humanity has passed through a long history of one-sidedness and of a social condition that has always contained the potential of destruction, despite its creative achievements in technology. The great project of our time must be to open the other eye: to see all-sidedly and wholly, to heal and transcend the cleavage between humanity and nature that came with early wisdom.”
—Murray Bookchin (b. 1941)