Zeroth-order Logic

Zeroth-order logic is first-order logic without quantifiers. A finitely axiomatizable zeroth-order logic is isomorphic to a propositional logic. Zeroth-order logic with axiom schema is a more expressive system than propositional logic. An example is given by the system Primitive recursive arithmetic, or PRA.

Read more about Zeroth-order Logic:  Example, Relation To General First-order Logic

Famous quotes containing the word logic:

    “... We need the interruption of the night
    To ease attention off when overtight,
    To break our logic in too long a flight,
    And ask us if our premises are right.”
    Robert Frost (1874–1963)