Examples
- In the category of groups (or of modules), a zero morphism is a homomorphism f : G → H that maps all of G to the identity element of H. The null object in the category of groups is the trivial group 1 = {1}, which is unique up to isomorphism. Every zero morphism can be factored through 1, i. e., f : G → 1 → H.
- More generally, suppose C is any category with a zero object 0. Then for all objects X and Y there is a unique sequence of morphisms
-
- 0XY : X → 0 → Y
- The family of all morphisms so constructed endows C with the structure of a category with zero morphisms.
- If C is a preadditive category, then every morphism set Mor(X,Y) is an abelian group and therefore has a zero element. These zero elements form a compatible family of zero morphisms for C making it into a category with zero morphisms.
- The category Set (sets with functions as morphisms) does not have a zero object, but it does have an initial object, the empty set ∅. The only right zero morphisms in Set are the functions ∅ → X for a set X.
Read more about this topic: Zero Morphism
Famous quotes containing the word examples:
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)