Zero Objects
A zero object in a category is both an initial and terminal object (and so an identity under both coproducts and products). For example, the trivial structure (containing only the identity) is a zero object in categories where morphisms must map identities to identities. Specific examples include:
- The trivial group, containing only the identity (a zero object in the category of groups)
- The zero module, containing only the identity (a zero object in the category of modules over a ring)
Read more about this topic: Zero Element
Famous quotes containing the word objects:
“It is ... pathetic to observe the complete lack of imagination on the part of certain employers and men and women of the upper-income levels, equally devoid of experience, equally glib with their criticism ... directed against workers, labor leaders, and other villains and personal devils who are the objects of their dart-throwing. Who doesnt know the wealthy woman who fulminates against the idle workers who just wont get out and hunt jobs?”
—Mary Barnett Gilson (1877?)
“Culture relates to objects and is a phenomenon of the world; entertainment relates to people and is a phenomenon of life.”
—Hannah Arendt (19061975)