Zero Morphisms
A zero morphism in a category is a generalised absorbing element under function composition: any morphism composed with a zero morphism gives a zero morphism. Specifically, if 0XY : X → Y is the zero morphism among morphisms from X to Y, and f : A → X and g : Y → B are arbitrary morphisms, then g ∘ 0XY = 0XB and 0XY ∘ f = 0AY.
If a category has a zero object 0, then there are canonical morphisms X → 0 and 0 → Y, and composing them gives a zero morphism 0XY : X → Y. In the category of groups, for example, zero morphisms are morphisms which always return group identities, thus generalising the function z(x) = 0.
Read more about this topic: Zero Element