Zero (complex Analysis) - Existence of Zeros

Existence of Zeros

The fundamental theorem of algebra says that every nonconstant polynomial with complex coefficients has at least one zero in the complex plane. This is in contrast to the situation with real zeros: some polynomial functions with real coefficients have no real zeros. An example is f(x) = x2 + 1.

Read more about this topic:  Zero (complex Analysis)

Famous quotes containing the word existence:

    When I think of God, when I think of him as existent, and when I believe him to be existent, my idea of him neither increases nor diminishes. But as it is certain there is a great difference betwixt the simple conception of the existence of an object, and the belief of it, and as this difference lies not in the parts or composition of the idea which we conceive; it follows, that it must lie in the manner in which we conceive it.
    David Hume (1711–1776)