Application To Finding Roots of Polynomials
Suppose and are univariate polynomials with real coefficients, and is a real number such that . (Actually, we may allow the coefficients and to come from any integral domain.) By the zero-product property, it follows that either or . In other words, the roots of are precisely the roots of together with the roots of .
Thus, one can use factorization to find the roots of a polynomial. For example, the polynomial factorizes as ; hence, its roots are precisely 3, 1, and -2.
In general, suppose is an integral domain and is a monic univariate polynomial of degree with coefficients in . Suppose also that has distinct roots . It follows (but we do not prove here) that factorizes as . By the zero-product property, it follows that are the only roots of : any root of must be a root of for some . In particular, has at most distinct roots.
If however is not an integral domain, then the conclusion need not hold. For example, the cubic polynomial has six roots in (though it has only three roots in ).
Read more about this topic: Zero-product Property
Famous quotes containing the words application to, application, finding and/or roots:
“If you would be a favourite of your king, address yourself to his weaknesses. An application to his reason will seldom prove very successful.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“Science is intimately integrated with the whole social structure and cultural tradition. They mutually support one otheronly in certain types of society can science flourish, and conversely without a continuous and healthy development and application of science such a society cannot function properly.”
—Talcott Parsons (19021979)
“We are paid for our suspicions by finding what we suspected.”
—Henry David Thoreau (18171862)
“Sprung from the West,
He drank the valorous youth of a new world.
The strength of virgin forests braced his mind,
The hush of spacious prairies stilled his soul.
His words were oaks in acorns; and his thoughts
Were roots that firmly gript the granite truth.”
—Edwin Markham (18521940)