Zero-phonon Line And Phonon Sideband
The zero-phonon line and the phonon sideband jointly constitute the line shape of individual light absorbing and emitting molecules (chromophores) embedded into a transparent solid matrix. When the host matrix contains many chromophores, each will contribute a zero-phonon line and a phonon sideband to the absorption and emission spectra. The spectra originating from a collection of identical chromophores in a matrix is said to be inhomogeneously broadened because each chromophore is surrounded by a somewhat different matrix environment which modifies the energy required for an electronic transition. In an inhomogeneous distribution of chromophores, individual zero-phonon line and phonon sideband positions are therefore shifted and overlapping.
Figure 1 shows the typical line shape for electronic transitions of individual chromophores in a solid matrix. The zero-phonon line is located at a frequency ω’ determined by the intrinsic difference in energy levels between ground and excited state as well as by the local environment. The phonon side band is shifted to a higher frequency in absorption and to a lower frequency in fluorescence. The frequency gap Δ between the zero-phonon line and the peak of the phonon side band is determined by Franck-Condon principles.
The distribution of intensity between the zero-phonon line and the phonon side band is strongly dependent on temperature. At room temperature there is enough thermal energy to excite many phonons and the probability of zero-phonon transition is close to zero. For organic chromophores in organic matrices, the probability of a zero-phonon electronic transition only becomes likely below about 40 kelvins, but depends also on the strength of coupling between the chromophore and the host lattice.
Read more about Zero-phonon Line And Phonon Sideband: Energy Diagram, Line Shape, Analogy To The Mössbauer Effect
Famous quotes containing the word line:
“Theres a line between love and fascination thats hard to see on an evening such as this.”
—Ned Washington (19011976)