History and Results
Zero-knowledge proofs were first conceived in 1985 by Shafi Goldwasser, Silvio Micali, and Charles Rackoff in a draft of "The Knowledge Complexity of Interactive Proof-Systems". While this landmark paper did not invent interactive proof systems, it did invent the IP hierarchy of interactive proof systems (see interactive proof system) and conceived the concept of knowledge complexity, a measurement of the amount of knowledge about the proof transferred from the prover to the verifier. They also gave the first zero-knowledge proof for a concrete problem, that of deciding quadratic nonresidues mod m. In their own words:
Of particular interest is the case where this additional knowledge is essentially 0 and we show that is possible to interactively prove that a number is quadratic non residue mod m releasing 0 additional knowledge. This is surprising as no efficient algorithm for deciding quadratic residuosity mod m is known when m’s factorization is not given. Moreover, all known NP proofs for this problem exhibit the prime factorization of m. This indicates that adding interaction to the proving process, may decrease the amount of knowledge that must be communicated in order to prove a theorem.
The quadratic nonresidue problem has both an NP and a co-NP algorithm, and so lies in the intersection of NP and co-NP. This was also true of several other problems for which zero-knowledge proofs were subsequently discovered, such as an unpublished proof system by Oded Goldreich verifying that a two-prime modulus is not a Blum integer.
Oded Goldreich, et al., took this one step further, showing that, assuming the existence of unbreakable encryption, one can create a zero-knowledge proof system for the NP-complete graph coloring problem with three colors. Since every problem in NP can be efficiently reduced to this problem, this means that, under this assumption, all problems in NP have zero-knowledge proofs. The reason for the assumption is that, as in the above example, their protocols require encryption. A commonly cited sufficient condition for the existence of unbreakable encryption is the existence of one-way functions, but it is conceivable that some physical means might also achieve it.
On top of this, they also showed that the graph nonisomorphism problem, the complement of the graph isomorphism problem, has a zero-knowledge proof. This problem is in co-NP, but is not currently known to be in either NP or any practical class. More generally, Goldreich, Goldwasser et al. would go on to show that, also assuming unbreakable encryption, there are zero-knowledge proofs for all problems in IP=PSPACE, or in other words, anything that can be proved by an interactive proof system can be proved with zero knowledge.
Not liking to make unnecessary assumptions, many theorists sought a way to eliminate the necessity of one way functions. One way this was done was with multi-prover interactive proof systems (see interactive proof system), which have multiple independent provers instead of only one, allowing the verifier to "cross-examine" the provers in isolation to avoid being misled. It can be shown that, without any intractability assumptions, all languages in NP have zero-knowledge proofs in such a system.
It turns out that in an Internet-like setting, where multiple protocols may be executed concurrently, building zero-knowledge proofs is more challenging. The line of research investigating concurrent zero-knowledge proofs was initiated by the work of Dwork, Naor, and Sahai. One particular development along these lines has been the development of witness-indistinguishable proof protocols. The property of witness-indistinguishability is related to that of zero-knowledge, yet witness-indistinguishable protocols do not suffer from the same problems of concurrent execution.
Another variant of zero-knowledge proofs are non-interactive zero-knowledge proofs. Blum, Feldman, and Micali showed that a common random string shared between the prover and the verifier is enough to achieve computational zero-knowledge without requiring interaction.
Read more about this topic: Zero-knowledge Proof
Famous quotes containing the words history and, history and/or results:
“The principle that human nature, in its psychological aspects, is nothing more than a product of history and given social relations removes all barriers to coercion and manipulation by the powerful.”
—Noam Chomsky (b. 1928)
“The history of all Magazines shows plainly that those which have attained celebrity were indebted for it to articles similar in natureto Berenicealthough, I grant you, far superior in style and execution. I say similar in nature. You ask me in what does this nature consist? In the ludicrous heightened into the grotesque: the fearful coloured into the horrible: the witty exaggerated into the burlesque: the singular wrought out into the strange and mystical.”
—Edgar Allan Poe (18091849)
“In the works of man, everything is as poor as its author; vision is confined, means are limited, scope is restricted, movements are labored, and results are humdrum.”
—Joseph De Maistre (17531821)