Applications
The functions are a basis defined over the circular support area, typically the pupil planes in classical optical imaging at visible and infrared wavelengths through systems of lenses and mirrors of finite diameter. Their advantages are the simple analytical properties inherited from the simplicity of the radial functions and the factorization in radial and azimuthal functions; this leads, for example, to closed form expressions of the two-dimensional Fourier transform in terms of Bessel Functions. Their disadvantage, in particular if high n are involved, is the unequal distribution of nodal lines over the unit disk, which introduces ringing effects near the perimeter, which often leads attempts to define other orthogonal functions over the circular disk.
In precision optical manufacturing, Zernike polynomials are used to characterize higher-order errors observed in interferometric analyses, in order to achieve desired system performance.
In optometry and ophthalmology Zernike polynomials are used to describe aberrations of the cornea or lens from an ideal spherical shape, which result in refraction errors.
They are commonly used in adaptive optics where they can be used to effectively cancel out atmospheric distortion. Obvious applications for this are IR or visual astronomy and Satellite imagery. For example, one of the Zernike terms (for m = 0, n = 2) is called 'de-focus'. By coupling the output from this term to a control system, an automatic focus can be implemented.
Another application of the Zernike polynomials is found in the Extended Nijboer-Zernike (ENZ) theory of diffraction and aberrations.
Zernike polynomials are widely used as basis functions of image moments. Since Zernike polynomials are orthogonal to each other, Zernike moments can represent properties of an image with no redundancy or overlap of information between the moments. Although Zernike moments are significantly dependent on the scaling and the translation of the object in an ROI, their magnitudes are independent of the rotation angle of the object. Thus, they can be utilized to extract features from images that describe the shape characteristics of an object. For instance, Zernike moments are utilized as shape descriptors to classify benign and malignant breast masses.
Read more about this topic: Zernike Polynomials