Proof
Zeckendorf's theorem has two parts:
- Existence: every positive integer n has a Zeckendorf representation.
- Uniqueness: no positive integer n has two different Zeckendorf representations.
The first part of Zeckendorf's theorem (existence) can be proven by induction. For n = 1, 2, 3 it is clearly true (as these are Fibonacci numbers), for n = 4 we have 4 = 3 + 1. Now suppose each n ≤ k has a Zeckendorf representation. If k + 1 is a Fibonacci number then we're done, else there exists j such that Fj < k + 1 < Fj + 1 . Now consider a = k + 1 − Fj . Since a ≤ k, a has a Zeckendorf representation (by the induction hypothesis). At the same time, Fj + a < Fj + 1 and since (by definition of Fibonacci numbers), a < Fj − 1, so the Zeckendorf representation of a does not contain Fj − 1 . As a result, k + 1 can be represented as the sum of Fj and the Zeckendorf representation of a.
The second part of Zeckendorf's theorem (uniqueness) requires the following lemma:
- Lemma: The sum of any non-empty set of distinct, non-consecutive Fibonacci numbers whose largest member is Fj is strictly less than the next largest Fibonacci number Fj + 1 .
The lemma can be proven by induction on j.
Now take two non-empty sets of distinct non-consecutive Fibonacci numbers S and T which have the same sum. Consider sets S′ and T′ which are equal to S and T from which the common elements have been removed (i.e. S′ = S\T and T′ = T\S). Since S and T had equal sum, and we have removed exactly the elements from S T from both sets, S′ and T′ must have the same sum as well.
Now we will show by contradiction that at least one of S′ and T′ is empty. Assume the contrary, i.e. that S′ and T′ are both non-empty and let the largest member of S′ be Fs and the largest member of T′ be Ft. Because S′ and T′ contain no common elements, Fs ≠ Ft. Without loss of generality, suppose Fs < Ft. Then by the lemma, the sum of S′ is strictly less than Fs + 1 and so is strictly less than Ft, whereas the sum of T′ is clearly at least Ft. This contradicts the fact that S′ and T′ have the same sum, and we can conclude that either S′ and T′ must be empty.
Now assume (again without loss of generality) that S′ is empty. Then S′ has sum 0, and so must T′. But since T′ can only contain positive integers, it must be empty too. To conclude: S′ = T′ = which implies S = T, proving that each Zeckendorf representation is unique.
Read more about this topic: Zeckendorf's Theorem
Famous quotes containing the word proof:
“If some books are deemed most baneful and their sale forbid, how, then, with deadlier facts, not dreams of doting men? Those whom books will hurt will not be proof against events. Events, not books, should be forbid.”
—Herman Melville (18191891)
“Ah! I have penetrated to those meadows on the morning of many a first spring day, jumping from hummock to hummock, from willow root to willow root, when the wild river valley and the woods were bathed in so pure and bright a light as would have waked the dead, if they had been slumbering in their graves, as some suppose. There needs no stronger proof of immortality. All things must live in such a light. O Death, where was thy sting? O Grave, where was thy victory, then?”
—Henry David Thoreau (18171862)
“From whichever angle one looks at it, the application of racial theories remains a striking proof of the lowered demands of public opinion upon the purity of critical judgment.”
—Johan Huizinga (18721945)