Example: Plane Curve
For example, suppose given a plane curve C defined by a polynomial equation
- F(X,Y) = 0
and take P to be the origin (0,0). When F is considered only in terms of its first-degree terms, we get a 'linearised' equation reading
- L(X,Y) = 0
in which all terms XaYb have been discarded if a + b > 1.
We have two cases: L may be 0, or it may be the equation of a line. In the first case the (Zariski) tangent space to C at (0,0) is the whole plane, considered as a two-dimensional affine space. In the second case, the tangent space is that line, considered as affine space. (The question of the origin comes up, when we take P as a general point on C; it is better to say 'affine space' and then note that P is a natural origin, rather than insist directly that it is a vector space.)
It is easy to see that over the real field we can obtain L in terms of the first partial derivatives of F. When those both are 0 at P, we have a singular point (double point, cusp or something more complicated). The general definition is that singular points of C are the cases when the tangent space has dimension 2.
Read more about this topic: Zariski Tangent Space
Famous quotes containing the words plane and/or curve:
“Even though I had let them choose their own socks since babyhood, I was only beginning to learn to trust their adult judgment.. . . I had a sensation very much like the moment in an airplane when you realize that even if you stop holding the plane up by gripping the arms of your seat until your knuckles show white, the plane will stay up by itself. . . . To detach myself from my children . . . I had to achieve a condition which might be called loving objectivity.”
—Anonymous Parent of Adult Children. Ourselves and Our Children, by Boston Womens Health Book Collective, ch. 5 (1978)
“I have been photographing our toilet, that glossy enameled receptacle of extraordinary beauty.... Here was every sensuous curve of the human figure divine but minus the imperfections. Never did the Greeks reach a more significant consummation to their culture, and it somehow reminded me, in the glory of its chaste convulsions and in its swelling, sweeping, forward movement of finely progressing contours, of the Victory of Samothrace.”
—Edward Weston (18861958)