Example: Plane Curve
For example, suppose given a plane curve C defined by a polynomial equation
- F(X,Y) = 0
and take P to be the origin (0,0). When F is considered only in terms of its first-degree terms, we get a 'linearised' equation reading
- L(X,Y) = 0
in which all terms XaYb have been discarded if a + b > 1.
We have two cases: L may be 0, or it may be the equation of a line. In the first case the (Zariski) tangent space to C at (0,0) is the whole plane, considered as a two-dimensional affine space. In the second case, the tangent space is that line, considered as affine space. (The question of the origin comes up, when we take P as a general point on C; it is better to say 'affine space' and then note that P is a natural origin, rather than insist directly that it is a vector space.)
It is easy to see that over the real field we can obtain L in terms of the first partial derivatives of F. When those both are 0 at P, we have a singular point (double point, cusp or something more complicated). The general definition is that singular points of C are the cases when the tangent space has dimension 2.
Read more about this topic: Zariski Tangent Space
Famous quotes containing the words plane and/or curve:
“It was the most ungrateful and unjust act ever perpetrated by a republic upon a class of citizens who had worked and sacrificed and suffered as did the women of this nation in the struggle of the Civil War only to be rewarded at its close by such unspeakable degradation as to be reduced to the plane of subjects to enfranchised slaves.”
—Anna Howard Shaw (18471919)
“Nothing ever prepares a couple for having a baby, especially the first one. And even baby number two or three, the surprises and challenges, the cosmic curve balls, keep on coming. We cant believe how much children change everythingthe time we rise and the time we go to bed; the way we fight and the way we get along. Even when, and if, we make love.”
—Susan Lapinski (20th century)