Zariski Tangent Space - Definition

Definition

The cotangent space of a local ring R, with maximal ideal m is defined to be

m/m2

It is a vector space over the residue field k := R/m. Its dual (as a k-vector space) is called tangent space of R.

This definition is a generalization of the above example to higher dimensions: suppose given an affine algebraic variety V and a point v of V. Morally, modding out m2 corresponds to dropping the non-linear terms from the equations defining V inside some affine space, therefore giving a system of linear equations that define the tangent space.

(One often defines the tangent and cotangent spaces for a manifold in the analogous manner.)

Read more about this topic:  Zariski Tangent Space

Famous quotes containing the word definition:

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)