In the mathematical field of extremal graph theory, the Zarankiewicz problem asks how many edges can be added to a bipartite graph while avoiding a specific bipartite subgraph. Initially, the Polish mathematician Kazimierz Zarankiewicz proposed the problem of determining the maximum number of edges in an n-vertex graph with no complete bipartite graph K3,3 as a subgraph, for n ≤ 6; that is, in later notation, he asked for the values of the function Z3(n). The Kővári–Sós–Turán theorem gives a bound on the Zarankiewicz problem when the subgraph to be avoided is a complete bipartite graph.
Read more about Zarankiewicz Problem: Definition, Example, The Kővári–Sós–Turán Theorem
Famous quotes containing the word problem:
“If we parents accept that problems are an essential part of lifes challenges, rather than reacting to every problem as if something has gone wrong with universe thats supposed to be perfect, we can demonstrate serenity and confidence in problem solving for our kids....By telling them that we know they have a problem and we know they can solve it, we can pass on a realistic attitude as well as empower our children with self-confidence and a sense of their own worth.”
—Barbara Coloroso (20th century)