Invariants Used To Describe Yield Surfaces
The first principal invariant of the Cauchy stress, and the second and third principal invariants of the deviatoric part of the Cauchy stress are defined as:
where are the principal values of are the principal values of, and
where is the identity matrix.
A related set of quantities, are usually used to describe yield surfaces for cohesive frictional materials such as rocks, soils, and ceramics. These are defined as
where is the equivalent stress. However, the possibility of negative values of and the resulting imaginary makes the use of these quantities problematic in practice.
Another related set of widely used invariants is which describe a cylindrical coordinate system (the Haigh–Westergaard coordinates). These are defined as:
The plane is also called the Rendulic plane. The angle is called the Lode angle and the relation between and was first given by Nayak and Zienkiewicz in 1972
The principal stresses and the Haigh–Westergaard coordinates are related by
A different definition of the Lode angle can also be found in the literature:
in which case
Whatever definition is chosen, the angle varies between 0 degrees to +60 degrees.
Read more about this topic: Yield Surface
Famous quotes containing the words describe, yield and/or surfaces:
“I describe family values as responsibility towards others, increase of tolerance, compromise, support, flexibility. And essentially the things I call the silent song of lifethe continuous process of mutual accommodation without which life is impossible.”
—Salvador Minuchin (20th century)
“Whether, if you yield not to your fathers choice,
You can endure the livery of a nun,
For aye to be in shady cloister mewed,
To live a barren sister all your life,
Chanting faint hymns to the cold fruitless moon.
Thrice blessed they that master so their blood
To undergo such maiden pilgrimage.”
—William Shakespeare (15641616)
“Footnotes are the finer-suckered surfaces that allow tentacular paragraphs to hold fast to the wider reality of the library.”
—Nicholson Baker (b. 1957)