Yield Surface - Invariants Used To Describe Yield Surfaces

Invariants Used To Describe Yield Surfaces

The first principal invariant of the Cauchy stress, and the second and third principal invariants of the deviatoric part of the Cauchy stress are defined as:

 \begin{align} I_1 & = \text{Tr}(\boldsymbol{\sigma}) = \sigma_1 + \sigma_2 + \sigma_3 \\ J_2 & = \tfrac{1}{2} \boldsymbol{s}:\boldsymbol{s} = \tfrac{1}{6}\left \\ J_3 & = \det(\boldsymbol{s}) = \tfrac{1}{3} (\boldsymbol{s}\cdot\boldsymbol{s}):\boldsymbol{s} = s_1 s_2 s_3 \end{align}

where are the principal values of are the principal values of, and

 \boldsymbol{s} = \boldsymbol{\sigma}-\tfrac{I_1}{3}\,\boldsymbol{I}

where is the identity matrix.

A related set of quantities, are usually used to describe yield surfaces for cohesive frictional materials such as rocks, soils, and ceramics. These are defined as

 p = \tfrac{1}{3}~I_1 ~:~~ q = \sqrt{3~J_2} = \sigma_\mathrm{eq} ~;~~ r = 3\left(\tfrac{1}{2}\,J_3\right)^{1/3}

where is the equivalent stress. However, the possibility of negative values of and the resulting imaginary makes the use of these quantities problematic in practice.

Another related set of widely used invariants is which describe a cylindrical coordinate system (the Haigh–Westergaard coordinates). These are defined as:

 \xi = \tfrac{1}{\sqrt{3}}~I_1 = \sqrt{3}~p ~;~~ \rho = \sqrt{2 J_2} = \sqrt{\tfrac{2}{3}}~q ~;~~ \cos(3\theta) = \left(\tfrac{r}{q}\right)^3 = \tfrac{3\sqrt{3}}{2}~\cfrac{J_3}{J_2^{3/2}}

The plane is also called the Rendulic plane. The angle is called the Lode angle and the relation between and was first given by Nayak and Zienkiewicz in 1972

The principal stresses and the Haigh–Westergaard coordinates are related by

 \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{bmatrix} = \tfrac{1}{\sqrt{3}} \begin{bmatrix} \xi \\ \xi \\ \xi \end{bmatrix} + \sqrt{\tfrac{2}{3}}~\rho~\begin{bmatrix} \cos\theta \\ \cos\left(\theta-\tfrac{2\pi}{3}\right) \\ \cos\left(\theta+\tfrac{2\pi}{3}\right) \end{bmatrix} = \tfrac{1}{\sqrt{3}} \begin{bmatrix} \xi \\ \xi \\ \xi \end{bmatrix} + \sqrt{\tfrac{2}{3}}~\rho~\begin{bmatrix} \cos\theta \\ -\sin\left(\tfrac{\pi}{6}-\theta\right) \\ -\sin\left(\tfrac{\pi}{6}+\theta\right) \end{bmatrix} \,.

A different definition of the Lode angle can also be found in the literature:

 \sin(3\theta) = -~\tfrac{3\sqrt{3}}{2}~\cfrac{J_3}{J_2^{3/2}}

in which case

 \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{bmatrix} = \tfrac{1}{\sqrt{3}} \begin{bmatrix} \xi \\ \xi \\ \xi \end{bmatrix} + \sqrt{\tfrac{2}{3}}~\rho~\begin{bmatrix} \sin\left(\theta-\tfrac{2\pi}{3}\right) \\ \sin\theta \\ \sin\left(\theta+\tfrac{2\pi}{3}\right) \end{bmatrix}
= \tfrac{1}{\sqrt{3}} \begin{bmatrix} \xi \\ \xi \\ \xi \end{bmatrix} + \sqrt{\tfrac{2}{3}}~\rho~\begin{bmatrix} -\cos\left(\tfrac{\pi}{6}-\theta\right) \\ \sin\theta \\ \cos\left(\tfrac{\pi}{6}+\theta\right) \end{bmatrix} \,.

Whatever definition is chosen, the angle varies between 0 degrees to +60 degrees.

Read more about this topic:  Yield Surface

Famous quotes containing the words describe, yield and/or surfaces:

    One can describe a landscape in many different words and sentences, but one would not normally cut up a picture of a landscape and rearrange it in different patterns in order to describe it in different ways. Because a photograph is not composed of discrete units strung out in a linear row of meaningful pieces, we do not understand it by looking at one element after another in a set sequence. The photograph is understood in one act of seeing; it is perceived in a gestalt.
    Joshua Meyrowitz, U.S. educator, media critic. “The Blurring of Public and Private Behaviors,” No Sense of Place: The Impact of Electronic Media on Social Behavior, Oxford University Press (1985)

    We devastate them unreligiously,
    And coldly ask their pottage, not their love.
    Therefore they shove us from them, yield to us
    Only what to our griping toil is due;
    But the sweet affluence of love and song,
    The rich results of the divine consents
    Of man and earth, of world beloved and lover;
    The nectar and ambrosia, are withheld.
    Ralph Waldo Emerson (1803–1882)

    Footnotes are the finer-suckered surfaces that allow tentacular paragraphs to hold fast to the wider reality of the library.
    Nicholson Baker (b. 1957)