Contributions To Chemistry and Material Science
X-ray crystallography has led to a better understanding of chemical bonds and non-covalent interactions. The initial studies revealed the typical radii of atoms, and confirmed many theoretical models of chemical bonding, such as the tetrahedral bonding of carbon in the diamond structure, the octahedral bonding of metals observed in ammonium hexachloroplatinate (IV), and the resonance observed in the planar carbonate group and in aromatic molecules. Kathleen Lonsdale's 1928 structure of hexamethylbenzene established the hexagonal symmetry of benzene and showed a clear difference in bond length between the aliphatic C–C bonds and aromatic C–C bonds; this finding led to the idea of resonance between chemical bonds, which had profound consequences for the development of chemistry. Her conclusions were anticipated by William Henry Bragg, who published models of naphthalene and anthracene in 1921 based on other molecules, an early form of molecular replacement.
Also in the 1920s, Victor Moritz Goldschmidt and later Linus Pauling developed rules for eliminating chemically unlikely structures and for determining the relative sizes of atoms. These rules led to the structure of brookite (1928) and an understanding of the relative stability of the rutile, brookite and anatase forms of titanium dioxide.
The distance between two bonded atoms is a sensitive measure of the bond strength and its bond order; thus, X-ray crystallographic studies have led to the discovery of even more exotic types of bonding in inorganic chemistry, such as metal-metal double bonds, metal-metal quadruple bonds, and three-center, two-electron bonds. X-ray crystallography—or, strictly speaking, an inelastic Compton scattering experiment—has also provided evidence for the partly covalent character of hydrogen bonds. In the field of organometallic chemistry, the X-ray structure of ferrocene initiated scientific studies of sandwich compounds, while that of Zeise's salt stimulated research into "back bonding" and metal-pi complexes. Finally, X-ray crystallography had a pioneering role in the development of supramolecular chemistry, particularly in clarifying the structures of the crown ethers and the principles of host-guest chemistry.
In material sciences, many complicated inorganic and organometallic systems have been analyzed using single-crystal methods, such as fullerenes, metalloporphyrins, and other complicated compounds. Single-crystal diffraction is also used in the pharmaceutical industry, due to recent problems with polymorphs. The major factors affecting the quality of single-crystal structures are the crystal's size and regularity; recrystallization is a commonly used technique to improve these factors in small-molecule crystals. The Cambridge Structural Database contains over 500,000 structures; over 99% of these structures were determined by X-ray diffraction.
Read more about this topic: X-ray Crystallography
Famous quotes containing the words contributions to, chemistry, material and/or science:
“The vast material displacements the machine has made in our physical environment are perhaps in the long run less important than its spiritual contributions to our culture.”
—Lewis Mumford (18951990)
“For me chemistry represented an indefinite cloud of future potentialities which enveloped my life to come in black volutes torn by fiery flashes, like those which had hidden Mount Sinai. Like Moses, from that cloud I expected my law, the principle of order in me, around me, and in the world.... I would watch the buds swell in spring, the mica glint in the granite, my own hands, and I would say to myself: I will understand this, too, I will understand everything.”
—Primo Levi (19191987)
“Who shall set a limit to the influence of a human being? There are men, who, by their sympathetic attractions, carry nations with them, and lead the activity of the human race. And if there be such a tie, that, wherever the mind of man goes, nature will accompany him, perhaps there are men whose magnetisms are of that force to draw material and elemental powers, and, where they appear, immense instrumentalities organize around them.”
—Ralph Waldo Emerson (18031882)
“Imagination could hardly do without metaphor, for imagination is, literally, the moving around in ones mind of images, and such images tend commonly to be metaphoric. Creative minds, as we know, are rich in images and metaphors, and this is true in science and art alike. The difference between scientist and artist has little to do with the ways of the creative imagination; everything to do with the manner of demonstration and verification of what has been seen or imagined.”
—Robert A. Nisbet (b. 1913)