Notation and Conventions
The structure of the wreath product of A by H depends on the H-set Ω and in case Ω is infinite it also depends on whether one uses the restricted or unrestricted wreath product. However, in literature the notation used may be deficient and one needs to pay attention on the circumstances.
- In literature A≀ΩH may stand for the unrestricted wreath product A WrΩ H or the restricted wreath product A wrΩ H.
- Similarly, A≀H may stand for the unrestricted regular wreath product A Wr H or the restricted regular wreath product A wr H.
- In literature the H-set Ω may be omitted from the notation even if Ω≠H.
- In the special case that H = Sn is the symmetric group of degree n it is common in the literature to assume that Ω={1,...,n} (with the natural action of Sn) and then omit Ω from the notation. That is, A≀Sn commonly denotes A≀{1,...,n}Sn instead of the regular wreath product A≀SnSn. In the first case the base group is the product of n copies of A, in the latter it is the product of n! copies of A.
Read more about this topic: Wreath Product
Famous quotes containing the word conventions:
“It is not human nature we should accuse but the despicable conventions that pervert it.”
—Denis Diderot (17131784)