The Converse As A Conjecture
It is conjectured that if
when k=3, then n is prime. The conjecture can be understood by considering k = 1 and 2 as well as 3. When k = 1, Babbage's theorem implies that it holds for n = p2 for p an odd prime, while Wolstenholme's theorem implies that it holds for n = p3 for p > 3. When k = 2, it holds for n = p2 if p is a Wolstenholme prime. Only a few other composite values of n are known when k = 1, and none are known when k = 2, much less k = 3. Thus the conjecture is considered likely because Wolstenholme's congruence seems over-constrained and artificial for composite numbers. Moreover, if the congruence does hold for any particular n other than a prime or prime power, and any particular k, it does not imply that
Read more about this topic: Wolstenholme's Theorem
Famous quotes containing the words converse and/or conjecture:
“The Anglo-American can indeed cut down, and grub up all this waving forest, and make a stump speech, and vote for Buchanan on its ruins, but he cannot converse with the spirit of the tree he fells, he cannot read the poetry and mythology which retire as he advances. He ignorantly erases mythological tablets in order to print his handbills and town-meeting warrants on them.”
—Henry David Thoreau (18171862)
“What these perplexities of my uncle Toby were,tis impossible for you to guess;Mif you could,I should blush ... as an author; inasmuch as I set no small store by myself upon this very account, that my reader has never yet been able to guess at any thing. And ... if I thought you was able to form the least ... conjecture to yourself, of what was to come in the next page,I would tear it out of my book.”
—Laurence Sterne (17131768)