WKB Approximation - Brief History

Brief History

This method is named after physicists Wentzel, Kramers, and Brillouin, who all developed it in 1926. In 1923, mathematician Harold Jeffreys had developed a general method of approximating solutions to linear, second-order differential equations, which includes the Schrödinger equation. Even though the Schrödinger equation was developed two years later, Wentzel, Kramers, and Brillouin were apparently unaware of this earlier work, so Jeffreys is often neglected credit. Early texts in quantum mechanics contain any number of combinations of their initials, including WBK, BWK, WKBJ, JWKB and BWKJ.

Earlier references to the method are: Carlini in 1817, Liouville in 1837, Green in 1837, Rayleigh in 1912 and Gans in 1915. Liouville and Green may be said to have founded the method in 1837, and it is also commonly referred to as the Liouville–Green or LG method.

The important contribution of Jeffreys, Wentzel, Kramers and Brillouin to the method was the inclusion of the treatment of turning points, connecting the evanescent and oscillatory solutions at either side of the turning point. For example, this may occur in the Schrödinger equation, due to a potential energy hill.

Read more about this topic:  WKB Approximation

Famous quotes containing the word history:

    In history the great moment is, when the savage is just ceasing to be a savage, with all his hairy Pelasgic strength directed on his opening sense of beauty;—and you have Pericles and Phidias,—and not yet passed over into the Corinthian civility. Everything good in nature and in the world is in that moment of transition, when the swarthy juices still flow plentifully from nature, but their astrigency or acridity is got out by ethics and humanity.
    Ralph Waldo Emerson (1803–1882)

    Both place and time were changed, and I dwelt nearer to those parts of the universe and to those eras in history which had most attracted me.
    Henry David Thoreau (1817–1862)