Probability Density Function
The Wishart distribution can be characterized by its probability density function, as follows.
Let be a p × p symmetric matrix of random variables that is positive definite. Let V be a (fixed) positive definite matrix of size p × p.
Then, if n ≥ p, has a Wishart distribution with n degrees of freedom if it has a probability density function given by
where Γp(·) is the multivariate gamma function defined as
In fact the above definition can be extended to any real n > p − 1. If n ≤ p − 2, then the Wishart no longer has a density—instead it represents a singular distribution.
Read more about this topic: Wishart Distribution
Famous quotes containing the words probability and/or function:
“The source of Pyrrhonism comes from failing to distinguish between a demonstration, a proof and a probability. A demonstration supposes that the contradictory idea is impossible; a proof of fact is where all the reasons lead to belief, without there being any pretext for doubt; a probability is where the reasons for belief are stronger than those for doubting.”
—Andrew Michael Ramsay (16861743)
“The uses of travel are occasional, and short; but the best fruit it finds, when it finds it, is conversation; and this is a main function of life.”
—Ralph Waldo Emerson (18031882)