Wishart Distribution - Probability Density Function

Probability Density Function

The Wishart distribution can be characterized by its probability density function, as follows.

Let be a p × p symmetric matrix of random variables that is positive definite. Let V be a (fixed) positive definite matrix of size p × p.

Then, if np, has a Wishart distribution with n degrees of freedom if it has a probability density function given by

where Γp(·) is the multivariate gamma function defined as


\Gamma_p(n/2)=
\pi^{p(p-1)/4}\Pi_{j=1}^p
\Gamma\left.

In fact the above definition can be extended to any real n > p − 1. If np − 2, then the Wishart no longer has a density—instead it represents a singular distribution.

Read more about this topic:  Wishart Distribution

Famous quotes containing the words probability and/or function:

    Crushed to earth and rising again is an author’s gymnastic. Once he fails to struggle to his feet and grab his pen, he will contemplate a fact he should never permit himself to face: that in all probability books have been written, are being written, will be written, better than anything he has done, is doing, or will do.
    Fannie Hurst (1889–1968)

    Every boy was supposed to come into the world equipped with a father whose prime function was to be our father and show us how to be men. He can escape us, but we can never escape him. Present or absent, dead or alive, real or imagined, our father is the main man in our masculinity.
    Frank Pittman (20th century)