Wind Energy
Wind energy is the kinetic energy of air in motion, also called wind. Total wind energy flowing through an imaginary area A during the time t is:
where ρ is the air density; v is the wind speed; Avt is the volume of air passing through A (which is considered perpendicular to the direction of the wind); Avtρ is therefore the mass m passing per unit time. Note that ½ ρv2 is the kinetic energy of the moving air per unit volume.
Power is energy per unit time, so the wind power incident on A (e.g. equal to the rotor area of a wind turbine) is:
Wind power in an open air stream is thus proportional to the third power of the wind speed; the available power increases eightfold when the wind speed doubles. Wind turbines for grid electricity therefore need to be especially efficient at greater wind speeds.
Wind is the movement of air across the surface of the Earth, affected by areas of high pressure and of low pressure. The surface of the Earth is heated unevenly by the Sun, depending on factors such as the angle of incidence of the sun's rays at the surface (which differs with latitude and time of day) and whether the land is open or covered with vegetation. Also, large bodies of water, such as the oceans, heat up and cool down slower than the land. The heat energy absorbed at the Earth's surface is transferred to the air directly above it and, as warmer air is less dense than cooler air, it rises above the cool air to form areas of high pressure and thus pressure differentials. The rotation of the Earth drags the atmosphere around with it causing turbulence. These effects combine to cause a constantly varying pattern of winds across the surface of the Earth.
The total amount of economically extractable power available from the wind is considerably more than present human power use from all sources. Axel Kleidon of the Max Planck Institute in Germany, carried out a "top down" calculation on how much wind energy there is, starting with the incoming solar radiation that drives the winds by creating temperature differences in the atmosphere. He concluded that somewhere between 18 TW and 68 TW could be extracted. Cristina Archer and Mark Z. Jacobson presented a "bottom-up" estimate, which unlike Kleidon's are based on actual measurements of wind speeds, and found that there is 1700 TW of wind power at an altitude of 100 metres over land and sea. Of this, "between 72 and 170 TW could be extracted in a practical and cost-competitive manner".
Read more about this topic: Wind Power
Famous quotes containing the words wind and/or energy:
“They went to him and woke him up, shouting, Master, Master, we are perishing! And he woke up and rebuked the wind and the raging waves; they ceased, and there was a calm. He said to them, Where is your faith? They were afraid and amazed, and said to one another, Who then is this, that he commands even the winds and the water, and they obey him?”
—Bible: New Testament, Luke 8:24-25.
“The scholar may be sure that he writes the tougher truth for the calluses on his palms. They give firmness to the sentence. Indeed, the mind never makes a great and successful effort, without a corresponding energy of the body.”
—Henry David Thoreau (18171862)