A Wilson prime, named after English mathematician John Wilson, is a prime number p such that p2 divides (p − 1)! + 1, where "!" denotes the factorial function; compare this with Wilson's theorem, which states that every prime p divides (p − 1)! + 1.
The only known Wilson primes are 5, 13, and 563 (sequence A007540 in OEIS); if any others exist, they must be greater than 2×1013. It has been conjectured that infinitely many Wilson primes exist, and that the number of Wilson primes in an interval is about log(log(y)/log(x)).
Several computer searches have been done in the hope of finding new Wilson primes. The Ibercivis distributed computing project includes a search for Wilson primes. Another search is coordinated at the mersenneforum.
Read more about Wilson Prime: Near-Wilson Primes
Famous quotes containing the words wilson and/or prime:
“...Often the accurate answer to a usage question begins, It depends. And what it depends on most often is where you are, who you are, who your listeners or readers are, and what your purpose in speaking or writing is.”
—Kenneth G. Wilson (b. 1923)
“I did not know I was in my prime until afterwards.”
—Mason Cooley (b. 1927)