The Wilkinson Microwave Anisotropy Probe (WMAP) – also known as the Microwave Anisotropy Probe (MAP), and Explorer 80 – is a spacecraft which measures differences in the temperature of the Big Bang's remnant radiant heat – the Cosmic Microwave Background Radiation – across the full sky. Headed by Professor Charles L. Bennett, Johns Hopkins University, the mission was developed in a joint partnership between the NASA Goddard Space Flight Center and Princeton University. The WMAP spacecraft was launched on June 30, 2001, at 19:46:46 GDT, from Florida. The WMAP mission succeeds the COBE space mission and was the second medium-class (MIDEX) spacecraft of the Explorer program. In 2003, MAP was renamed WMAP in honor of cosmologist David Todd Wilkinson (1935–2002), who had been a member of the mission's science team.
WMAP's measurements played the key role in establishing the current Standard Model of Cosmology: the Lambda-CDM model. WMAP data are very well fit by a universe that is dominated by dark energy in the form of a cosmological constant. Other cosmological data are also consistent, and together tightly constrain the Model. In the Lambda-CDM model of the universe, the age of the universe is 13.75 ± 0.11 billion years. The WMAP mission's determination of the age of the universe to better than 1% precision was recognized by the Guinness Book of World Records. The current expansion rate of the universe is (see Hubble constant) of 70.5 ± 1.3 km·s−1·Mpc−1. The content of the universe presently consists of 4.56% ± 0.15% ordinary baryonic matter; 22.8% ± 1.3% Cold dark matter (CDM) that neither emits nor absorbs light; and 72.6% ± 1.5% of dark energy in the form of a cosmological constant that accelerates the expansion of the universe. Less than 1% of the current contents of the universe is in neutrinos, but WMAP's measurements have found, for the first time in 2008, that the data prefers the existence of a cosmic neutrino background with an effective number of neutrino flavors of 4.4 ± 1.5, consistent with the expectation of 3.06. The contents point to a Euclidean flat geometry, with the ratio of the energy density in curvature to the critical density 0.0179 < Ωk <0.0081 (95%CL). The WMAP measurements also support the cosmic inflation paradigm in several ways, including the flatness measurement.
According to Science magazine, the WMAP was the Breakthrough of the Year for 2003. This mission's results papers were first and second in the "Super Hot Papers in Science Since 2003" list. Of the all-time most referenced papers in physics and astronomy in the INSPIRE-HEP database, only three have been published since 2000, and all three are WMAP publications. On May 27, 2010, it was announced that Bennett, Lyman A. Page, Jr., and David N. Spergel, the latter both of Princeton University, would share the 2010 Shaw Prize in astronomy for their work on WMAP.
As of October 2010, the WMAP spacecraft is in a graveyard orbit after 9 years of operations. The Astronomy and Physics Senior Review panel at NASA Headquarters has endorsed a total of 9 years of WMAP operations, through September 2010. All WMAP data are released to the public and have been subject to careful scrutiny.
Some aspects of the data are statistically unusual for the Standard Model of Cosmology. For example, the greatest angular-scale measurements, the quadrupole moment, is somewhat smaller than the Model would predict, but this discrepancy is not highly significant. A large cold spot and other features of the data are more statistically significant, and research continues into these.
Read more about Wilkinson Microwave Anisotropy Probe: Objectives, Development, Spacecraft, Launch, Trajectory, and Orbit, Foreground Radiation Subtraction, Main Result, Follow-on Missions and Future Measurements
Famous quotes containing the words microwave and/or probe:
“The New Age? Its just the old age stuck in a microwave oven for fifteen seconds.”
—James Randi (b. 1928)
“Yknow scientists are funny. We probe and measure and dissect. Invent lights without heat, weigh a caterpillars eyebrow. But when it comes to really important things were as stupid as the caveman.... Like love. Makes the world go round, but what do we know about it? Is it a fact? Is it chemistry? Electricity?”
—Martin Berkeley, and Jack Arnold. Helen Dobson (Lori Nelson)