History and Search Status
In 1902 W. F. Meyer proved a theorem about solutions of the congruence ap − 1 ≡ 1 (mod pr). Later in that decade Arthur Wieferich showed specifically that if the first case of Fermat's last theorem has solutions for an odd prime exponent, then that prime must satisfy that congruence for a = 2 and r = 2. In other words, if there exist solutions to xp + yp + zp = 0 in integers x, y, z and p an odd prime with p ∤ xyz, then p satisfies 2p − 1 ≡ 1 (mod p2). In 1913, Bachmann examined the residues of . He asked the question when this residue vanishes and tried to find expressions for answering this question.
The prime 1093 was found to be a Wieferich prime by Waldemar Meissner in 1913 and confirmed to be the only such prime below 2000. He calculated the smallest residue of for all primes p < 2000 and found this residue to be zero for t = 364 and p = 1093, thereby providing a counterexample to a conjecture by Grawe about the impossibility of the Wieferich congruence. E. Haentzschel later ordered verification of the correctness of Meissners congruence via only elementary calculations. Inspired by an earlier work of Euler, he simplified Meissners proof by showing that 10932 | (2182 + 1) and remarked that (2182 + 1) is a factor of (2364 − 1). It was also shown that it is possible to prove that 1093 is a Wieferich prime without using complex numbers contrary to the method used by Meissner, although Meissner himself hinted at that he was aware of a proof without complex values. The prime 3511 was first found to be a Wieferich prime by N. G. W. H. Beeger in 1922 and another proof of it being a Wieferich prime was published in 1965 by Guy. In 1960, Kravitz doubled a previous record set by Fröberg and in 1961 Riesel extended the search to 500000 with the aid of BESK. Around 1980, Lehmer was able to reach the search limit of 6×109. This limit was extended to over 2.5×1015 in 2006, finally reaching 3×1015. It is now known, that if any other Wieferich primes exist, they must be greater than 6.7×1015. The search for new Wieferich primes is currently performed by the distributed computing project Wieferich@Home. In December 2011, another search was started by the PrimeGrid project. As of May 2012, PrimeGrid has extended the search limit to 17×1015 and continues.
Chris Caldwell conjectured that only a finite number of Wieferich primes exist. It has also been conjectured (as for Wilson primes) that infinitely many Wieferich primes exist, and that the number of Wieferich primes below x is approximately log(log(x)), which is a heuristic result that follows from the plausible assumption that for a prime p, the (p − 1)-th degree roots of unity modulo p2 are uniformly distributed in the multiplicative group of integers modulo p2.
Read more about this topic: Wieferich Prime
Famous quotes containing the words history, search and/or status:
“The basic idea which runs right through modern history and modern liberalism is that the public has got to be marginalized. The general public are viewed as no more than ignorant and meddlesome outsiders, a bewildered herd.”
—Noam Chomsky (b. 1928)
“The house a woman creates is a Utopia. She cant help itcant help trying to interest her nearest and dearest not in happiness itself but in the search for it.”
—Marguerite Duras (b. 1914)
“His Majestys Government view with favour the establishment in Palestine of a national home for the Jewish people, and will use their best endeavours to facilitate the achievement of this object, it being clearly understood that nothing shall be done which may prejudice the civil and religious rights of existing non-Jewish communities in Palestine, or the rights and political status enjoyed by Jews in any other country.”
—A.J. (Arthur James)