Both Thermal/quantum and Static/dynamic
Taken together, the previous two examples show how the path integral formulation of quantum mechanics is related to statistical mechanics. From statistical mechanics, the shape of each spring in a collection at temperature will deviate from the least-energy shape due to thermal fluctuations; the probability of finding a spring with a given shape decreases exponentially with the energy difference from the least-energy shape. Similarly, a quantum particle moving in a potential can be described by a superposition of paths, each with a phase : the thermal variations in the shape across the collection have turned into quantum uncertainty in the path of the quantum particle.
Read more about this topic: Wick Rotation
Famous quotes containing the words quantum and/or dynamic:
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)
“The nearer a conception comes towards finality, the nearer does the dynamic relation, out of which this concept has arisen, draw to a close. To know is to lose.”
—D.H. (David Herbert)