Spaces With Isomorphic Homotopy Groups May Not Be Homotopy Equivalent
A word of caution: it is not enough to assume πn(X) is isomorphic to πn(Y) for each n ≥ 1 in order to conclude that X and Y are homotopy equivalent. One really needs a map f : X → Y inducing such isomorphisms in homotopy. For instance, take X= S2 × RP3 and Y= RP² × S³. Then X and Y have the same fundamental group, namely Z2, and the same universal cover, namely S² × S³; thus, they have isomorphic homotopy groups. On the other hand their homology groups are different (as can be seen from the Künneth formula); thus, X and Y are not homotopy equivalent.
The Whitehead theorem does not hold for general topological spaces or even for all subspaces of Rn. For example, the Warsaw circle, a subset of the plane, has all homotopy groups zero, but the map from the Warsaw circle to a single point is not a homotopy equivalence. The study of possible generalizations of Whitehead's theorem to more general spaces is part of the subject of shape theory.
Read more about this topic: Whitehead Theorem
Famous quotes containing the words spaces, groups and/or equivalent:
“Though there were numerous vessels at this great distance in the horizon on every side, yet the vast spaces between them, like the spaces between the stars,far as they were distant from us, so were they from one another,nay, some were twice as far from each other as from us,impressed us with a sense of the immensity of the ocean, the unfruitful ocean, as it has been called, and we could see what proportion man and his works bear to the globe.”
—Henry David Thoreau (18171862)
“Writers and politicians are natural rivals. Both groups try to make the world in their own images; they fight for the same territory.”
—Salman Rushdie (b. 1947)
“But then people dont read literature in order to understand; they read it because they want to re-live the feelings and sensations which they found exciting in the past. Art can be a lot of things; but in actual practice, most of it is merely the mental equivalent of alcohol and cantharides.”
—Aldous Huxley (18941963)