Summing Up
WMCF (pp. 378–79) concludes with some key points, a number of which follow. Mathematics arises from our bodies and brains, our everyday experiences, and the concerns of human societies and cultures. It is:
- The result of normal adult cognitive capacities, in particular the capacity for conceptual metaphor, and as such is a human universal. The ability to construct conceptual metaphors is neurologically based, and enables humans to reason about one domain using the language and concepts of another domain. Conceptual metaphor is both what enabled mathematics to grow out of everyday activities, and what enables mathematics to grow by a continual process of analogy and abstraction;
- Symbolic, thereby enormously facilitating precise calculation;
- Not transcendent, but the result of human evolution and culture, to which it owes its effectiveness. The connection between mathematical ideas and our experience of the world occurs within human minds;
- A system of human concepts making extraordinary use of the ordinary tools of human cognition;
- An open-ended creation of human beings, who remain responsible for maintaining and extending it;
- One of the greatest products of the collective human imagination, and a magnificent example of the beauty, richness, complexity, diversity, and importance of human ideas.
The cognitive approach to formal systems, as described and implemented in WMCF, need not be confined to mathematics, but should also prove fruitful when applied to formal logic, and to formal philosophy such as Edward Zalta's theory of abstract objects. Lakoff and Johnson (1999) fruitfully employ the cognitive approach to rethink a good deal of the philosophy of mind, epistemology, metaphysics, and the history of ideas.
Read more about this topic: Where Mathematics Comes From
Famous quotes related to summing up:
“Learn what is true, in order to do what is right, is the summing up of the whole duty of man, for all who are unable to satisfy their mental hunger with the east wind of authority.”
—Thomas Henry Huxley (182595)