Well-ordering Theorem - History

History

Georg Cantor considered the well-ordering theorem to be a "fundamental principle of thought." Most mathematicians however find it difficult to visualize a well-ordering of, for example, the set R of real numbers. In 1904, Gyula Kőnig claimed to have proven that such a well-ordering cannot exist. A few weeks later, Felix Hausdorff found a mistake in the proof. It turned out, though, that the well-ordering theorem is equivalent to the axiom of choice, in the sense that either one together with the Zermelo–Fraenkel axioms is sufficient to prove the other, in first order logic (The same applies to Zorn's Lemma.) . In second order logic, however, the well-ordering theorem is strictly stronger than the axiom of choice: from the well-ordering theorem one may deduce the axiom of choice, but from the axiom of choice one cannot deduce the well-ordering theorem.

Read more about this topic:  Well-ordering Theorem

Famous quotes containing the word history:

    It is remarkable how closely the history of the apple tree is connected with that of man.
    Henry David Thoreau (1817–1862)

    In history an additional result is commonly produced by human actions beyond that which they aim at and obtain—that which they immediately recognize and desire. They gratify their own interest; but something further is thereby accomplished, latent in the actions in question, though not present to their consciousness, and not included in their design.
    Georg Wilhelm Friedrich Hegel (1770–1831)

    The one duty we owe to history is to rewrite it.
    Oscar Wilde (1854–1900)