Well-ordering Theorem - History

History

Georg Cantor considered the well-ordering theorem to be a "fundamental principle of thought." Most mathematicians however find it difficult to visualize a well-ordering of, for example, the set R of real numbers. In 1904, Gyula Kőnig claimed to have proven that such a well-ordering cannot exist. A few weeks later, Felix Hausdorff found a mistake in the proof. It turned out, though, that the well-ordering theorem is equivalent to the axiom of choice, in the sense that either one together with the Zermelo–Fraenkel axioms is sufficient to prove the other, in first order logic (The same applies to Zorn's Lemma.) . In second order logic, however, the well-ordering theorem is strictly stronger than the axiom of choice: from the well-ordering theorem one may deduce the axiom of choice, but from the axiom of choice one cannot deduce the well-ordering theorem.

Read more about this topic:  Well-ordering Theorem

Famous quotes containing the word history:

    The principle office of history I take to be this: to prevent virtuous actions from being forgotten, and that evil words and deeds should fear an infamous reputation with posterity.
    Tacitus (c. 55–117)

    The one duty we owe to history is to rewrite it.
    Oscar Wilde (1854–1900)

    Free from public debt, at peace with all the world, and with no complicated interests to consult in our intercourse with foreign powers, the present may be hailed as the epoch in our history the most favorable for the settlement of those principles in our domestic policy which shall be best calculated to give stability to our Republic and secure the blessings of freedom to our citizens.
    Andrew Jackson (1767–1845)