Weil Conjectures - Statement of The Weil Conjectures

Statement of The Weil Conjectures

Suppose that X is a non-singular n-dimensional projective algebraic variety over the field Fq with q elements. The zeta function ζ(X, s) of X is by definition

where Nm is the number of points of X defined over the degree m extension Fqm of Fq.

The Weil conjectures state:

  1. (Rationality) ζ(X, s) is a rational function of T = q−s. More precisely, ζ(X, s) can be written as a finite alternating product
    where each Pi(T) is an integral polynomial. Furthermore, P0(T) = 1 − T, P2n(T) = 1 − qnT, and for 1 ≤ i ≤ 2n − 1, Pi(T) factors over C as for some numbers αij.
  2. (Functional equation and Poincaré duality) The zeta function satisfies
    or equivalently
    where E is the Euler characteristic of X. In particular, for each i, the numbers α2n-i,1, α2n-i,2, … equal the numbers qni,1, qni,2, … in some order.
  3. (Riemann hypothesis) |αi,j| = qi/2 for all 1 ≤ i ≤ 2n − 1 and all j. This implies that all zeros of Pk(T) lie on the "critical line" of complex numbers s with real part k/2.
  4. (Betti numbers) If X is a (good) "reduction mod p" of a non-singular projective variety Y defined over a number field embedded in the field of complex numbers, then the degree of Pi is the ith Betti number of the space of complex points of Y.

Read more about this topic:  Weil Conjectures

Famous quotes containing the words statement of the, statement of, statement, weil and/or conjectures:

    It is commonplace that a problem stated is well on its way to solution, for statement of the nature of a problem signifies that the underlying quality is being transformed into determinate distinctions of terms and relations or has become an object of articulate thought.
    John Dewey (1859–1952)

    Truth is used to vitalize a statement rather than devitalize it. Truth implies more than a simple statement of fact. “I don’t have any whisky,” may be a fact but it is not a truth.
    William Burroughs (b. 1914)

    He that writes to himself writes to an eternal public. That statement only is fit to be made public, which you have come at in attempting to satisfy your own curiosity.
    Ralph Waldo Emerson (1803–1882)

    I am not a Catholic; but I consider the Christian idea, which has its roots in Greek thought and in the course of the centuries has nourished all of our European civilization, as something that one cannot renounce without becoming degraded.
    —Simone Weil (1909–1943)

    After all, it is putting a very high price on one’s conjectures to have a man roasted alive because of them.
    Michel de Montaigne (1533–1592)