Statement of The Weil Conjectures
Suppose that X is a non-singular n-dimensional projective algebraic variety over the field Fq with q elements. The zeta function ζ(X, s) of X is by definition
where Nm is the number of points of X defined over the degree m extension Fqm of Fq.
The Weil conjectures state:
- (Rationality) ζ(X, s) is a rational function of T = q−s. More precisely, ζ(X, s) can be written as a finite alternating product
- (Functional equation and Poincaré duality) The zeta function satisfies
- (Riemann hypothesis) |αi,j| = qi/2 for all 1 ≤ i ≤ 2n − 1 and all j. This implies that all zeros of Pk(T) lie on the "critical line" of complex numbers s with real part k/2.
- (Betti numbers) If X is a (good) "reduction mod p" of a non-singular projective variety Y defined over a number field embedded in the field of complex numbers, then the degree of Pi is the ith Betti number of the space of complex points of Y.
Read more about this topic: Weil Conjectures
Famous quotes containing the words statement of, statement, weil and/or conjectures:
“Eloquence must be grounded on the plainest narrative. Afterwards, it may warm itself until it exhales symbols of every kind and color, speaks only through the most poetic forms; but first and last, it must still be at bottom a biblical statement of fact.”
—Ralph Waldo Emerson (18031882)
“If we do take statements to be the primary bearers of truth, there seems to be a very simple answer to the question, what is it for them to be true: for a statement to be true is for things to be as they are stated to be.”
—J.L. (John Langshaw)
“The afflicted are not listened to. They are like someone whose tongue has been cut out and who occasionally forgets the fact. When they move their lips no ear perceives any sound. And they themselves soon sink into impotence in the use of language, because of the certainty of not being heard.”
—Simone Weil (19091943)
“After all, it is putting a very high price on ones conjectures to have a man roasted alive because of them.”
—Michel de Montaigne (15331592)