Weil Conjectures - Grothendieck's Formula For The Zeta Function

Grothendieck's Formula For The Zeta Function

Grothendieck proved an analogue of the Lefschetz fixed point formula for l-adic cohomology theory, and by applying it to the Frobenius automorphism F was able to prove the following formula for the zeta function.

where each polynomial Pi is the determinant of I − TF on the l-adic cohomology group Hi.

The rationality of the zeta function follows immediately. The functional equation for the zeta function follows from Poincaré duality for l-adic cohomology, and the relation with complex Betti numbers of a lift follows from a comparison theorem between l-adic and ordinary cohomology for complex varieties.

More generally, Grothendieck proved a similar formula for the zeta function of a sheaf F0:

as a product over cohomology groups:

The special case of the constant sheaf gives the usual zeta function.

Read more about this topic:  Weil Conjectures

Famous quotes containing the words formula and/or function:

    Ideals possess the strange quality that if they were completely realized they would turn into nonsense. One could easily follow a commandment such as “Thou shalt not kill” to the point of dying of starvation; and I might establish the formula that for the proper functioning of the mesh of our ideals, as in the case of a strainer, the holes are just as important as the mesh.
    Robert Musil (1880–1942)

    It is the function of vice to keep virtue within reasonable bounds.
    Samuel Butler (1835–1902)