Weighted Sample Variance
Typically when a mean is calculated it is important to know the variance and standard deviation about that mean. When a weighted mean is used, the variance of the weighted sample is different from the variance of the unweighted sample. The biased weighted sample variance is defined similarly to the normal biased sample variance:
where, which is 1 for normalized weights.
For small samples, it is customary to use an unbiased estimator for the population variance. In normal unweighted samples, the N in the denominator (corresponding to the sample size) is changed to N − 1. While this is simple in unweighted samples, it is not straightforward when the sample is weighted. The unbiased estimator of a weighted population variance (assuming each is drawn from a Gaussian distribution with variance ) is given by :
where as introduced previously. The degrees of freedom of the weighted, unbiased sample variance vary accordingly from N − 1 down to 0.
The standard deviation is simply the square root of the variance above.
If all of the are drawn from the same distribution and the integer weights indicate frequency of occurrence in the sample, then the unbiased estimator of the weighted population variance is given by
If all are unique, then counts the number of unique values, and counts the number of samples.
For example, if values are drawn from the same distribution, then we can treat this set as an unweighted sample, or we can treat it as the weighted sample with corresponding weights, and we should get the same results.
Read more about this topic: Weighted Mean
Famous quotes containing the words sample and/or variance:
“All that a city will ever allow you is an angle on itan oblique, indirect sample of what it contains, or what passes through it; a point of view.”
—Peter Conrad (b. 1948)
“There is an untroubled harmony in everything, a full consonance in nature; only in our illusory freedom do we feel at variance with it.”
—Fyodor Tyutchev (18031873)