Weierstrass's Elliptic Functions - Differential Equation

Differential Equation

With this notation, the ℘ function satisfies the following differential equation:

where dependence on and is suppressed.

This relation can be quickly verified by comparing the poles of both sides, for example, the pole at z = 0 of lhs is


^2|_{z=0}\sim \frac{4}{z^6}-\frac{24}{z^2}\sum \frac{1}{(m\omega_1+n\omega_2)^4}-80\sum \frac{1}{(m\omega_1+n\omega_2)^6}

while the pole at z = 0 of


^3|_{z=0}\sim \frac{1}{z^6}+\frac{9}{z^2}\sum \frac{1}{(m\omega_1+n\omega_2)^4}+15\sum \frac{1}{(m\omega_1+n\omega_2)^6}.

Comparing these two yields the relation above.

Read more about this topic:  Weierstrass's Elliptic Functions

Famous quotes containing the words differential and/or equation:

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    A nation fights well in proportion to the amount of men and materials it has. And the other equation is that the individual soldier in that army is a more effective soldier the poorer his standard of living has been in the past.
    Norman Mailer (b. 1923)