Wedge Sum - Categorical Description

Categorical Description

The wedge sum can be understood as the coproduct in the category of pointed spaces. Alternatively, the wedge sum can be seen as the pushout of the diagram X ← {•} → Y in the category of topological spaces (where {•} is any one point space).

Read more about this topic:  Wedge Sum

Famous quotes containing the words categorical and/or description:

    We do the same thing to parents that we do to children. We insist that they are some kind of categorical abstraction because they produced a child. They were people before that, and they’re still people in all other areas of their lives. But when it comes to the state of parenthood they are abruptly heir to a whole collection of virtues and feelings that are assigned to them with a fine arbitrary disregard for individuality.
    Leontine Young (20th century)

    The next Augustan age will dawn on the other side of the Atlantic. There will, perhaps, be a Thucydides at Boston, a Xenophon at New York, and, in time, a Virgil at Mexico, and a Newton at Peru. At last, some curious traveller from Lima will visit England and give a description of the ruins of St Paul’s, like the editions of Balbec and Palmyra.
    Horace Walpole (1717–1797)