Weak Interaction - Electroweak Theory

Electroweak Theory

The Standard Model of particle physics describes the electromagnetic interaction and the weak interaction as two different aspects of a single electroweak interaction, the theory of which was developed around 1968 by Sheldon Glashow, Abdus Salam and Steven Weinberg. They were awarded the 1979 Nobel Prize in Physics for their work. The Higgs mechanism provides an explanation for the presence of three massive gauge bosons (the three carriers of the weak interaction) and the massless photon of the electromagnetic interaction.

According to the electroweak theory, at very high energies, the universe has four massless gauge boson fields similar to the photon and a complex scalar Higgs field doublet. However, at low energies, gauge symmetry is spontaneously broken down to the U(1) symmetry of electromagnetism (one of the Higgs fields acquires a vacuum expectation value). This symmetry breaking would produce three massless bosons, but they become integrated by three photon-like fields (through the Higgs mechanism) giving them mass. These three fields become the W+, W− and Z bosons of the weak interaction, while the fourth gauge field which remains massless is the photon of electromagnetism.

Although this theory has made a number of predictions, including a prediction of the masses of the Z and W bosons before their discovery, the Higgs boson itself has not yet been confirmed to be observed. On 4 July 2012, the CMS and the ATLAS experimental teams at the Large Hadron Collider independently announced that they each confirmed the formal discovery of a previously unknown boson of mass between 125–127 GeV/c2, whose behaviour so far was "consistent with" a Higgs boson, while adding a cautious note that further data and analysis were needed before positively identifying the new boson beyond doubt as being a Higgs boson of some type.

Read more about this topic:  Weak Interaction

Famous quotes containing the word theory:

    Won’t this whole instinct matter bear revision?
    Won’t almost any theory bear revision?
    To err is human, not to, animal.
    Robert Frost (1874–1963)