History and Context
The concept of wavefunction collapse was introduced by Werner Heisenberg in his 1927 paper on the uncertainty principle, "Über den anschaulichen Inhalt der quantentheoretischen Kinematic und Mechanik", and incorporated into the mathematical formulation of quantum mechanics by John von Neumann, in his 1932 treatise Mathematische Grundlagen der Quantenmechanik. Consistent with Heisenberg, von Neumann postulated that there were two processes of wave function change:
- The probabilistic, non-unitary, non-local, discontinuous change brought about by observation and measurement, as outlined above.
- The deterministic, unitary, continuous time evolution of an isolated system that obeys Schrödinger's equation (or nowadays some relativistic, local equivalent, i.e. Dirac's equation).
In general, quantum systems exist in superpositions of those basis states that most closely correspond to classical descriptions, and, when not being measured or observed, evolve according to the time dependent Schrödinger equation, relativistic quantum field theory or some form of quantum gravity or string theory, which is process (2) mentioned above. However, when the wave function collapses (process (1)), from an observer's perspective the state seems to "leap" or "jump" to just one of the basis states and uniquely acquire the value of the property being measured, associated with that particular basis state. After the collapse, the system begins to evolve again according to the Schrödinger equation or some equivalent wave equation.
By explicitly dealing with the interaction of object and measuring instrument, von Neumann has attempted to create consistency of the two processes of wave function change.
He was able to prove the possibility of a quantum mechanical measurement scheme consistent with wave function collapse. However, he did not prove the necessity of such a collapse. Although von Neumann's projection postulate is often presented as a normative description of quantum measurement, it was conceived by taking into account experimental evidence available during the 1930s (in particular the Compton-Simon experiment has been paradigmatic), and many important present-day measurement procedures do not satisfy it (so-called measurements of the second kind).
The existence of the wave function collapse is required in
- the Copenhagen interpretation
- the objective collapse interpretations
- the transactional interpretation
- the von Neumann interpretation in which consciousness causes collapse.
On the other hand, the collapse is considered as a redundant or optional approximation in
- the Bohm interpretation
- the Ensemble Interpretation
- the Many-Worlds Interpretation
- interpretations based on Consistent Histories.
The cluster of phenomena described by the expression wave function collapse is a fundamental problem in the interpretation of quantum mechanics, and is known as the measurement problem. The problem is not really confronted by the Copenhagen Interpretation, which postulates that this is a special characteristic of the "measurement" process. The Many-Worlds Interpretation deals with it by discarding the collapse-process, thus reformulating the relation between measurement apparatus and system in such a way that the linear laws of quantum mechanics are universally valid; that is, the only process according to which a quantum system evolves is governed by the Schrödinger equation or some relativistic equivalent. Often tied in with the Many-Worlds Interpretation, but not limited to it, is the physical process of decoherence, which causes an apparent collapse. Decoherence is also important for the interpretation based on Consistent Histories.
A general description of the evolution of quantum mechanical systems is possible by using density operators and quantum operations. In this formalism (which is closely related to the C*-algebraic formalism) the collapse of the wave function corresponds to a non-unitary quantum operation.
The significance ascribed to the wave function varies from interpretation to interpretation, and varies even within an interpretation (such as the Copenhagen Interpretation). If the wave function merely encodes an observer's knowledge of the universe then the wave function collapse corresponds to the receipt of new information. This is somewhat analogous to the situation in classical physics, except that the classical "wave function" does not necessarily obey a wave equation. If the wave function is physically real, in some sense and to some extent, then the collapse of the wave function is also seen as a real process, to the same extent.
Read more about this topic: Wave Function Collapse
Famous quotes containing the words history and/or context:
“Let it suffice that in the light of these two facts, namely, that the mind is One, and that nature is its correlative, history is to be read and written.”
—Ralph Waldo Emerson (18031882)
“Parents are led to believe that they must be consistent, that is, always respond to the same issue the same way. Consistency is good up to a point but your child also needs to understand context and subtlety . . . much of adult life is governed by context: what is appropriate in one setting is not appropriate in another; the way something is said may be more important than what is said. . . .”
—Stanley I. Greenspan (20th century)