Vulnerable Plaque - Detection

Detection

While a single ruptured plaque can be identified during autopsy as the cause of a coronary event, there is currently no way to identify a culprit lesion before it ruptures.

Because artery walls typically enlarge in response to enlarging plaques, these plaques do not usually produce much stenosis of the artery lumen. Therefore, they are not detected by cardiac stress tests or angiography, the tests most commonly performed clinically with the goal of predicting susceptibility to future heart attack. In addition, because these lesions do not produce significant stenoses, they are typically not considered "critical" and/or interventionable by interventional cardiologists, even though research indicates that they are the more important lesions for producing heart attacks.

The tests most commonly performed clinically with the goal of testing susceptibility to future heart attack include several medical research efforts, starting in the early to mid-1990s, using intravascular ultrasound (IVUS), thermography, near-infrared spectroscopy, careful clinical follow-up, and other methods, to predict these lesions and the individuals most prone to future heart attacks. These efforts remain largely research with no useful clinical methods to date (2006).

Another approach to detecting and understanding plaque behavior, used in research and by a few clinicians, is to use ultrasound to non-invasively measure wall thickness (usually abbreviated IMT) in portions of larger arteries closest to the skin, such as the carotid or femoral arteries. While stability vs. vulnerability cannot be readily distinguished in this way, quantitative baseline measurements of the thickest portions of the arterial wall (locations with the most plaque accumulation). Documenting the IMT, location of each measurement and plaque size, a basis for tracking and partially verifying the effects of medical treatments on the progression, stability, or potential regression of plaque, within a given individual over time, may be achieved.

Read more about this topic:  Vulnerable Plaque