Von Neumann Entropy - Definition

Definition

Given the density matrix ρ, von Neumann defined the entropy as

which is a proper extension of the Gibbs entropy (up to a factor ) and the Shannon entropy to the quantum case. To compute S(ρ) it is convenient (see logarithm of a matrix) to compute the Eigendecomposition of . The von Neumann entropy is then given by

Since, for a pure state, the density matrix is idempotent, ρ=ρ2, the entropy S(ρ) for it vanishes. Thus, if the system is finite (finite dimensional matrix representation), the entropy S(ρ) quantifies the departure of the system from a pure state. In other words, it codifies the degree of mixing of the state describing a given finite system. Measurement decoheres a quantum system into something noninterfering and ostensibly classical; so, e.g., the vanishing entropy of a pure state |Ψ⟩ = (|0⟩+|1⟩)/√2, corresponding to a density matrix

\rho = {1\over 2} \begin{pmatrix}
1 & 1 \\
1 & 1 \end{pmatrix}

increases to S=ln 2 =0.69 for the measurement outcome mixture

\rho = {1\over 2} \begin{pmatrix}
1 & 0 \\
0 & 1 \end{pmatrix}

as the quantum interference information is erased.

Read more about this topic:  Von Neumann Entropy

Famous quotes containing the word definition:

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)