Definition
Given the density matrix ρ, von Neumann defined the entropy as
which is a proper extension of the Gibbs entropy (up to a factor ) and the Shannon entropy to the quantum case. To compute S(ρ) it is convenient (see logarithm of a matrix) to compute the Eigendecomposition of . The von Neumann entropy is then given by
Since, for a pure state, the density matrix is idempotent, ρ=ρ2, the entropy S(ρ) for it vanishes. Thus, if the system is finite (finite dimensional matrix representation), the entropy S(ρ) quantifies the departure of the system from a pure state. In other words, it codifies the degree of mixing of the state describing a given finite system. Measurement decoheres a quantum system into something noninterfering and ostensibly classical; so, e.g., the vanishing entropy of a pure state |Ψ⟩ = (|0⟩+|1⟩)/√2, corresponding to a density matrix
increases to S=ln 2 =0.69 for the measurement outcome mixture
as the quantum interference information is erased.
Read more about this topic: Von Neumann Entropy
Famous quotes containing the word definition:
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)