Definition
Given the density matrix ρ, von Neumann defined the entropy as
which is a proper extension of the Gibbs entropy (up to a factor ) and the Shannon entropy to the quantum case. To compute S(ρ) it is convenient (see logarithm of a matrix) to compute the Eigendecomposition of . The von Neumann entropy is then given by
Since, for a pure state, the density matrix is idempotent, ρ=ρ2, the entropy S(ρ) for it vanishes. Thus, if the system is finite (finite dimensional matrix representation), the entropy S(ρ) quantifies the departure of the system from a pure state. In other words, it codifies the degree of mixing of the state describing a given finite system. Measurement decoheres a quantum system into something noninterfering and ostensibly classical; so, e.g., the vanishing entropy of a pure state |Ψ⟩ = (|0⟩+|1⟩)/√2, corresponding to a density matrix
increases to S=ln 2 =0.69 for the measurement outcome mixture
as the quantum interference information is erased.
Read more about this topic: Von Neumann Entropy
Famous quotes containing the word definition:
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)